Novel, high throughput method to study in vitro protein release from polymer nanospheres.
نویسندگان
چکیده
Controlled delivery of therapeutic protein drugs using biodegradable polymer carriers is a desired characteristic that enables effective, application-specific therapy and treatment. Previous studies have focused on protein delivery from polymers using conventional "one-sample-at-a-time" techniques, which are time-consuming and costly. In addition, many therapeutic proteins are in limited supply and are expensive, so it is desirable to reduce sample size for design and development of delivery devices. We have developed a rapid, high throughput technique based on a highly sensitive fluorescence-based assay to detect and quantify protein released from polyanhydrides while utilizing relatively small amounts of protein (approximately 40 microg). These studies focused on the release of a model protein, Texas Red conjugated bovine serum albumin, from polyanhydride copolymers based on sebacic acid (SA) and 1,6-bis(p-carboxyphenoxy)hexane (CPH). The protein release profiles were assessed simultaneously to investigate the effect of polymer device geometry (nanospheres vs films), polymer chemistry, and pH of the release medium. The results indicated that the nanosphere geometry, SA-rich chemistries, and neutral pH release medium led to a more rapid release of the protein compared to the film geometry, CPH-rich chemistries, and acidic pH release medium, respectively. This high throughput fluorescence-based method can be readily extended to study release kinetics for other proteins and polymer systems.
منابع مشابه
Anticancer Activity of Nanoparticles Based on PLGA and its Co-polymer: In-vitro Evaluation
Attempts have been made to prepare nanoparticles based on poly(lactic-co-glycolic acid) (PLGA) and doxorubicin. Biological evaluation and physio-chemical characterizations were performed to elucidate the effects of initial drug loading and polymer composition on nanoparticle properties and its antitumor activity. PLGA nanoparticles were formulated by sonication method. Lactide/glycolide ratio ...
متن کاملAnticancer Activity of Nanoparticles Based on PLGA and its Co-polymer: In-vitro Evaluation
Attempts have been made to prepare nanoparticles based on poly(lactic-co-glycolic acid) (PLGA) and doxorubicin. Biological evaluation and physio-chemical characterizations were performed to elucidate the effects of initial drug loading and polymer composition on nanoparticle properties and its antitumor activity. PLGA nanoparticles were formulated by sonication method. Lactide/glycolide ratio ...
متن کاملPLGA Nanospheres Loaded with Autoclaved Leishmania Major (ALM) and CpG-ODN: Preparation and in vitro Characterization
Objective(s) Several antigens, adjuvants and delivery systems have been evaluated for induction of protective immune responses against Leishmaniasis, but most of them have been inefficient. In this study, PLGA nanospheres as antigen delivery system CpG-ODN as an immunoadjuvant for increasing the immune responses against Autoclaved Leishmania major (ALM) were prepared and characterized. Materi...
متن کاملPreparation and Evaluation of Poly (s-caprolactone) Nanoparticles-in- Microparticles by W/O/W Emulsion Method
Objective(s) Theophylline, a xanthenes derivative, is still widely used as an effective bronchodilator in the management of asthmatic patients. It is used both as a prophylactic drug and to prevent acute exacerbations of asthma. The aim of study was to formulate and evaluate effect of the microencapsulation of theophylline loaded nanoparticles on the reduction of burst release. Materials and Me...
متن کاملCombinatorial Synthesis of and high-throughput protein release from polymer film and nanoparticle libraries.
Polyanhydrides are a class of biomaterials with excellent biocompatibility and drug delivery capabilities. While they have been studied extensively with conventional one-sample-at-a-time synthesis techniques, a more recent high-throughput approach has been developed enabling the synthesis and testing of large libraries of polyanhydrides(1). This will facilitate more efficient optimization and d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of combinatorial chemistry
دوره 12 1 شماره
صفحات -
تاریخ انتشار 2010